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Introduction to 
Reinforcement Learning

• A subset of machine learning wherein 
an agent interacts and learns from its 
environment over time.

• The agent receives a state from its 
environment and selects an action
according to its policy (a mapping 
from states to actions).

• The agent then receives the next 
state and a scalar reward from the 
environment.

• Goal is to achieve the maximum 
amount of reward over time.

Environment
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State
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https://mofanpy.com/static/results/reinforcement-learning/6-4-demo_google2.gif

Reward

Next State
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Introduction to EXARL

• EXARL is a scalable reinforcement learning framework for scientific environments. 
– Originally developed as part of ExaLearn through Exascale Computing Project (ECP)

• Why scalable?
– Scientific environments are complex and often take a long time to run, even while running in 

parallel
– Ability to run on multiple nodes reduces this time

• The goal of EXARL is to make prototyping and reproducing scientific RL studies easier by…
– Providing a framework of agents, environments, workflows that are easy to add and implement
– Having a user-friendly front-end interface (written in python)
– Supporting different hardware and software infrastructures

Easily eXtendable Architecture 
for Reinforcement Learning
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EXARL architecture

• Actor:
• Gets the model/policy from the learner
• Interacts with the environment by taking action based on the model/policy
• Receives the trajectories (state,action,next-state,reward) from the environment
• Sends the batched trajectories to the learner to update the policy

• Learner:
• Receives trajectories from actor
• Updates the model/policy based on the new data
• Sends the updated policy to the actor

• EXARL provides a scalable framework for reinforcement learning
• Multiple actors & environments – to accelerate learning process

• Multiple learners – to accelerate policy update process
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and Learner
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EXARL Implementation: Asynchronous vs RMA workflow

RMA asynchronous workflow:
• One-sided(MPI-RMA) communication 

b/w actors and learners
• Pros: Supports multiple learners, high 

policy update frequency – decoupled 
actors and learners

• Cons: Policy and experience lag 
between actors and learners

Asynchronous workflow:
• Blocking two-sided (MPI-Send/Recv) 

communication b/w actors and learners
• Pros: Actors receive recently updated 

policies 
• Cons: Only has single-learner 

implementation, poor scalability, low 
policy update frequency
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Overview

Main goal of the Co-Design Summer School 2021 is to provide algorithmic 
improvements to EXARL framework. This is in the form of:

Adding Functionalities
• New agents: Advantage Actor 

Critic (A2C/A3C), Twin Delayed 
Deep Deterministic Policy 
Gradient (TD3)

• V-trace algorithm
• Priority Experience Replay

Improving Performance 
• Scaling asynchronous workflow 

to multiple learners
• Improve scalability/execution 

time of multi-learner workflows
• Accelerate Deep Q-Network 

(DQN) data generation pipeline
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Building Multi-learner Asynchronous Workflow

• Current approach: Asynchronous workflow only supports single-learner

Learner

Actor 1 Actor 2 Actor 3 Actor 4

Waiting

Tra
ining data

Update policy
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Building Multi-learner Asynchronous Workflow

• Current approach: Asynchronous workflow only supports single-learner

Learner

Actor 1 Actor 2 Actor 3 Actor 4

Waiting

Update policy

New
 Polic

y
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Building Multi-learner Asynchronous Workflow

• Current approach: Asynchronous workflow only supports single-learner

Learner

Actor 1 Actor 2 Actor 3 Actor 4

Waiting

Update policy

Training data

• Limitation: 
• Slow training time in case of multiple actors and/or fast environments
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Multi-learner Asynchronous Workflow
• Update: Implemented multi-learner asynchronous workflow

Actor 1 Actor 2 Actor 3 Actor 4

Learner 1 Learner 2 Learner 3 

Training data

Distributed training 2. Master learner distributes 
batches to remaining learner to 
perform distributed training

1. All actors send the training 
data/trajectories to the master 
learner (Master-Worker)
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Multi-learner Asynchronous Workflow
• Update: Implemented multi-learner asynchronous workflow
• Pros: Faster training
• Cons: Low policy update frequency 

Actor 1 Actor 2 Actor 3 Actor 4

Learner 1 Learner 2 Learner 3 

New Policy
3. Updated Policy is sent to the 
actors
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Multi-learner Asynchronous Workflow: Results
• Experimental Setup:

• System: Darwin | Node: Intel Broadwell (36 cores)
• Partition: Scaling
• Environment: ExaBooster
• Episode count: 1000 | Step count: 200

• Observations:
• Reduced training time with multiple learners
• Poor convergence with multiple learners 

• Low policy update frequency
• Multiple learner workflow more suitable for on-

policy agents
• Policy update after every episode

*Tests run on Darwin (scaling partition): Intel Broadwell (36 cores) + IB ConnectX-4
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Multi-learner RMA Workflow: Window-Selection Policy
In Multi-learner RMA workflow, learner gets the training data from the actor’s RMA window

Learner 1

Actor 1 Actor 2 Actor 3 Actor 4

RMA window 1 RMA window 2 RMA window 3 RMA window 4

Learner 2 Learner 3

Current approach: Each learner randomly selects one of the actor’s RMA window
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Multi-learner RMA Workflow: Window-Selection Policy
In Multi-learner RMA workflow, learner gets the training data from the actor’s RMA window

Learner 1

Actor 1 Actor 2 Actor 3 Actor 4

RMA window 1 RMA window 2 RMA window 3 RMA window 4

Learner 2 Learner 3

Limitation: Multiple learners access same actor window
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Multi-learner RMA Workflow: Window-Selection Policy
Performed simulations to observe the frequency of such behaviour  
Observations:

§ Significant occurrence when # of learners are at least 25% of the total actors 
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Multi-learner RMA Workflow: Window-Selection Policy
• Proposed approach:

• Allocate a set of actor RMA windows to each learner

Learner 1

Actor 1 Actor 2 Actor 3 Actor 4

RMA window 1 RMA window 2 RMA window 3 RMA window 4

Learner 2
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Multi-learner RMA Workflow: Window-Selection Policy
• Proposed approach:

• Allocate a set of actor RMA windows to each learner

Learner 1

Actor 1 Actor 2 Actor 3 Actor 4

RMA window 1 RMA window 2 RMA window 3 RMA window 4

Learner 2



198/5/2021

Multi-learner RMA Workflow: Window-Selection Policy
• Advantages:

• Guarantees no learner reads from the same actor’s RMA window 

Learner 1

Actor 1 Actor 2 Actor 3 Actor 4

RMA window 1 RMA window 2 RMA window 3 RMA window 4

Learner 2
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Multi-learner RMA Window Selection Policy: Results
• Experimental Setup:

• Environment: ExaBooster
• Episode count: 1000 Step count: 200
• Action type: variable

• Observations:
• Faster convergence
• Improvement in convergence is due to non redundant 

training data during distributed learning 

*Tests run on Darwin (scaling partition): Intel Broadwell (36 cores) + IB ConnectX-4

Range-based

Random

8 learners
16 actors

16 learners
16 actors
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Multi-learner RMA Window Selection Policy: Results
• Observations:

• Faster convergence
• (Not significant) reduction in access time. 

*Tests run on Darwin (scaling partition): Intel Broadwell (36 cores) + IB ConnectX-4

0.125
0.13

0.135
0.14

0.145
0.15

0.155
0.16

4 8 16

tim
e 

(s
ec

on
ds

)

# of learners

RMA Window Get time (averaged across all 
learners) 

Random window selection Range based window select ion

5200
5400
5600
5800
6000
6200
6400
6600
6800

4 8 16
# of learners

Number of RMA Window Accesses 

Random window selection Range based window select ion

• Experimental Setup:
• Environment: ExaBooster
• Episode count: 1000 Step count: 200
• Action type: fixed
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Current approach
• Single learner.
• Communication pattern based on 

blocking MPI P2P routines.

RMA Queue approach
• Use the queue data structure from the

current EXARL RMA workflow.
• Multi-learner communication pattern:

- Actors interact with the
environment continuously and
push batched training data to
their local queue (blocks if the
queue is full).

- Each group of actors is assigned
to a specific learner that pops
training data randomly from its
queue.

Advantages
• The actors and the learners are 

decoupled.
- There is no active synchronization 

need.
• Multi-learner approach.

Multi-learner RMA Queue Asynchronous workflow

Blocks if the queue is full

Data structure implemented by the EXARL team



238/3/2021

Multi-learner RMA Queue Asynchronous workflow 
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RMA Queue Asynchronous workflow – Implementation details

RMA Queue 
approach
• Each group of 

actors is assigned 
to a specific 
learner à allows 
to limit the 
number of 
simultaneous 
accesses to the 
same queue.
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RMA Queue Asynchronous workflow – Implementation details

RMA Queue approach
• Learners that 

exhaust all ‘active’ 
actors assist other 
learners in fetching 
batch data.

• The “shared bitmap 
array” indicates 
which actors are 
active. This prevents 
getting data from an 
empty queue.
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Multi-learner RMA Queue Asynchronous workflow –
results

Single learner
• Achieved 25% performance 

improvement (on 4 nodes) compared 
to current asynchronous workflow.

• Limited Scalability: adding more 
actors didn’t decrease the execution 
time à obvious need to increase 
concurrency through adding learners.

*Tests run on Darwin (scaling partition): Intel Broadwell (36 cores) + IB ConnectX-4

# MPI Ranks

Limited Scalability à need to 
increase the number of 

learners
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Multi-learner RMA Queue Asynchronous workflow – results

Multi-learner
• Achieved 77% performance 

improvements (using 20 learners) 
compared to the single learner 
version.

• Good performance improvements 
for the same amount of hardware 
resources (140 processes).

*Tests run on Darwin (scaling partition): Intel Broadwell (36 cores) + IB ConnectX-4

# Learners
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Can result in significant 
execution time 
increase for certain 
agents as the 
“generate_data()” 
function is called on 
the learner. 

Example : DQN agent

SEED Architecture – moving the inference part to the learner

SEED RL : http://arxiv.org/abs/1910.06591 

Current approach SEED approach

Learner sends model weights Learner sends the action to take

Actors send an entire training 
batch

Actors send a single observation

SEED Disadvantages

SEED Advantages
• Using GPUs for neural network inference can result in 

execution time performance improvements for larger models
• As there is only one copy of the model, there is no issue of 

copies going out of sync
• Low bandwidth requirements relative to model parameters

*Tests run on Darwin (scaling partition): Intel Broadwell (36 cores) + IB ConnectX-4

SEED Results
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Accelerating DQN Data-Generation Pipeline

• Calculating Bellman optimality equation on each 
experience is expensive

• 90% of computation time
• Current approach: Actor generates the training data
• Optimization: Offload data-generation on remaining 

environment processes
• Assumption: actor and environment does not 

execute simultaneously

Environment process

Actor process

Action

Step

Generate 
data
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Accelerating DQN Data-Generation Pipeline

• Calculating Bellman optimality equation on each 
experience is expensive

• 90% of computation time
• Current approach: Actor generates the training data
• Optimization: Offload data-generation on remaining 

environment processes
• Assumption: actor and environment does not 

execute simultaneously

Environment process

Actor process

Action

Step

Generate data 
(parallel)
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Accelerating DQN Data-Generation Pipeline
• Results:

• Average speedup of 3.30x upon scaling the workload to 4 processes
• Faster convergence
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Overview

Main goal of the Co-Design Summer School 2021 is to provide algorithmic 
improvements to EXARL framework. This is in the form of:

Adding Functionalities
• New agents: Advantage Actor 

Critic (A2C/A3C), Twin Delayed 
Deep Deterministic Policy 
Gradient (TD3)

• V-trace algorithm
• Priority Experience Replay

Improving Performance 
• Scaling asynchronous workflow 

to multiple learners
• Improve scalability/execution 

time of multi-learner workflows
• Accelerate Deep Q-Network 

(DQN) data generation pipeline
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Current Available Agent: 
• Deep Q-Network (DQN)
Limitations: 
• DQN often takes a long time to train 

because it uses old data from replay buffer 

• Training time is also long because of 
calculation of Bellman Equation

Update:
• A2C: synchronous workflow 
• A3C: asynchronous workflow

• Faster to train & with more diverse data 
because each worker has their own 
environment for generating trajectories

• Current implementation is for discrete action 
space environments, but can be formulated 
for continuous ones, as well.

Actor Actor Actor Actor

Network

Critic (Value) Actor (Policy)

Environment Environment Environment Environment

Learner

(Asynchronous) Advantage Actor Critic (A2C/A3C)
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Current Available Agent: 
• Deep Q-Network (DQN)
Limitations: 
• DQN often takes a long time to train 

because it uses old data from replay buffer 

• Training time is also long because of 
calculation of Bellman Equation

Update:
• A2C: synchronous workflow 
• A3C: asynchronous workflow

• Faster to train & with more diverse data 
because each worker has their own 
environment for generating trajectories

• Current implementation is for discrete action 
space environments, but can be formulated 
for continuous ones, as well.

Actor Actor Actor Actor

Network

Critic (Value) Actor (Policy)

Environment Environment Environment Environment

Learner

(Asynchronous) Advantage Actor Critic (A2C/A3C)

e.g. move left or right

e.g. move according to an applied torque
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(Asynchronous) Advantage Actor Critic + V-Trace

• On-policy: the policy an actor acts 
with should be the same as the 
policy a learner learns with.

• In the EXARL framework, we can’t 
always guarantee that they will 
have the same policy.

• To correct for that, we add an 
algorithm called “v-trace” to the 
loss functions.

• This correction assumes that the 
ratio between the two policies is 
always equal to one, therefore its 
addition forces this condition and 
we obtain the required on-policy 
behavior.

Actor Actor Actor Actor

Network

Critic (Value) Actor (Policy)

Environment Environment Environment Environment

V-Trace

Learner
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Max. reward for CartPole is 200.

The agent successfully balances 
the pole on the cart for 200 

consecutive time steps (call this 
convergence). 

A2C/A3C with v-trace reaches 
convergence, while A2C/A3C 
without v-trace does not.

www.martinholub.com
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A2C/A3C converge to expected value 
of 200 (CartPole environment), 

however DQN does not.

Results show DQN with Multi-Layer 
Perceptron (MLP) network, however 
results are similar for DQN with Long 
Short-Term Memory (LSTM) network.

www.martinholub.com
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ExaBooster Environment

• Control problem for FNAL particle accelerator at FermiLab.
• Reinforcement learning is used to control particle beam quality (ie. reduce beam losses) in real time. 
• Keeps the beam field from spreading (thus degrading the beam quality) by regulating the magnetic 

current of the booster.
• Original work developed by PNNL, FNAL, University of California San Diego, Columbia University
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Convergence means: magnetic 
current is within some tolerance of an 

optimal value, which prevents too 
much spread in the beam field

A2C/A3C converges slightly faster 
than DQN (with LSTM network)
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Added Agents
Current Available Agent for Continuous Action Space:
• Deep Deterministic Policy Gradient (DDPG)

Limitations:
• It is frequently brittle to hyperparameters and other kinds of 

tuning
• The learned Q-function begins to overestimate Q-values which 

leads to policy breaking

Additions:
• Twin Delay Deep Deterministic policy gradient agent
• Prioritized Replay Buffer with Sumtree
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Twin Delay Deep Deterministic Policy Gradient (TD3)
Off-policy Agent: the policy an actor acts is independent on 
the policy a learner learns. 

Twin Delay Deep Deterministic Policy Gradient Agent 
(TD3):

• Address the overestimate issue by using 3 tricks

• Clicked Double Q-learning: Learns two Q-functions 
and uses the smaller of the two Q-values to form the 
targets in the Bellman error loss functions.

• Delayed Policy agent: Updates the policy and target 
networks less frequently than the Q-function

• Target policy smoothing: TD3 adds noise to the 
target action, to make it harder for the policy to 
exploit Q-function errors by smoothing out Q along 
the changes in action

TD3 Architecture

https://www.researchgate.net/figure/Structure-of-TD3-Twin-Delayed-Deep-
Deterministic-Policy-Gradient-with-RAMDP_fig2_338605159
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TD3 vs DDPG (Synchronous workflow)
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Effect of Replay Buffer  

Uniform Sampling Replay Buffer
• Each transition sample in the minibatch is sampled uniformly from 

pool of stored experiences

• Limitation: When treating all samples the same, we are not using 
the fact that we can learn more from some experience

Prioritized Experience Replay Buffer
• Ranking of the experiences using the temporal-difference (TD) 

error ( difference between the Q function and its target).

• Ranking of experiences by TD-error was done by storing the 
priority to experience mapping in a sum-tree.

• To avoid overfitting of our agent we update our policy network 
with important sampling weights.

• Sum-tree takes O(log n) for updating the tree and 0(1) to get the 
highest priority.

https://pylessons.com/CartPole-PER/
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Summary/Conclusions: Performance Improvements
• We demonstrated improved scalability performance using efficient RMA 

communication patterns. 
• Here we found that the total execution time decreased by 77% while using 20 

learners and 120 actors on 4 nodes.
• We also created a multi-learner asynchronous workflow.
• Here we found there was a 43.4% increase in training throughput with 8 

learners (actors = 8), training time reduced by 31% (actors = 16; learners = 8)
• We improved upon the existing framework by accelerating the data 

generation pipeline for the DQN agent for faster convergence. 
• Here we found an average speedup of 3.30x when scaling the workload to 4 

processes. 
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Summary/Conclusions: Adding Functionalities
• We expanded the capability of EXARL by including additional agents like 

(Asynchronized) Advantage Actor Critic (A2C/A3C) and Twin Delayed Deep 
Deterministic Policy Gradient (TD3) 

• We also explored algorithmic improvements such as v-trace and Prioritized 
Experience Replay

• Here we found that A2C/A3C performed best with v-trace and outperformed 
Deep Q-Network (DQN) on both the CartPole game and the ExaBooster
scientific environment.

• We also found that TD3 performed as good as the existing Deep 
Deterministic Policy Gradient (DDPG) agent  

• We saw that adding Prioritized Experience Replay to DDPG accelerated 
convergence.
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Questions?


